

Articles

<https://www.sciencedirect.com/science/article/pii/S2468024925004851>

🧵 Tweetorial Alert 🧶

1/

Hey #NephTwitter!

Welcome to a NEW #tweetorial #xtorial brought to you by [@KIReports](#)

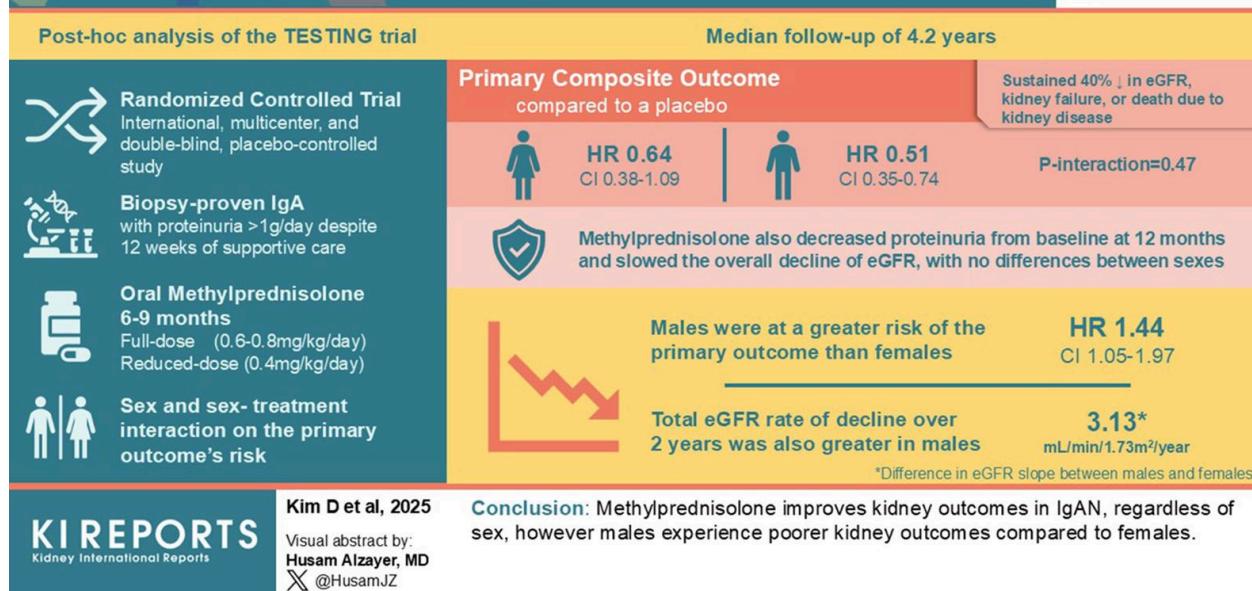
2/

Our author is Melvin @MChanMD (pediatric nephrologist)

Our topic: Sex Differences Across Corticosteroid Response and Outcomes in IgA Nephropathy

[#MedTwitter](#) [#nephwitter](#) [@ISNkidneycare](#) [#XTwitter](#)

3/


There are no conflicts of interest. Please also check out #KIReportsCommunity educational [#blogposts](#) at <https://www.kireportscommunity.org/>. FOLLOW US at [@KIReports](#) for more expert [#MedEd](#) in [#kidneydisease](#). [#FOAMed](#) [@MedTweetorials](#)

4/ Our [#Tweetorial](#) is based on a recent publication by Dr. Dana Kim and VA by [@husamjz.bsky.social](#):

Sex Differences Across Corticosteroid Response and Outcomes in IgA Nephropathy

🔗 <https://www.sciencedirect.com/science/article/pii/S2468024925004851>

Sex Differences across Corticosteroid Response and Outcomes in IgA Nephropathy

5/ Intro

- ⚡️ ↑ recognition that sex plays a role in predicting trajectory of CKD
- ⚡️ Traditionally, there is higher prevalence of CKD in ♀ whereas ♂ have more progressive CKD
- ⚡️ Little is known about how sex affects treatment responses in IgAN, specifically with steroids.

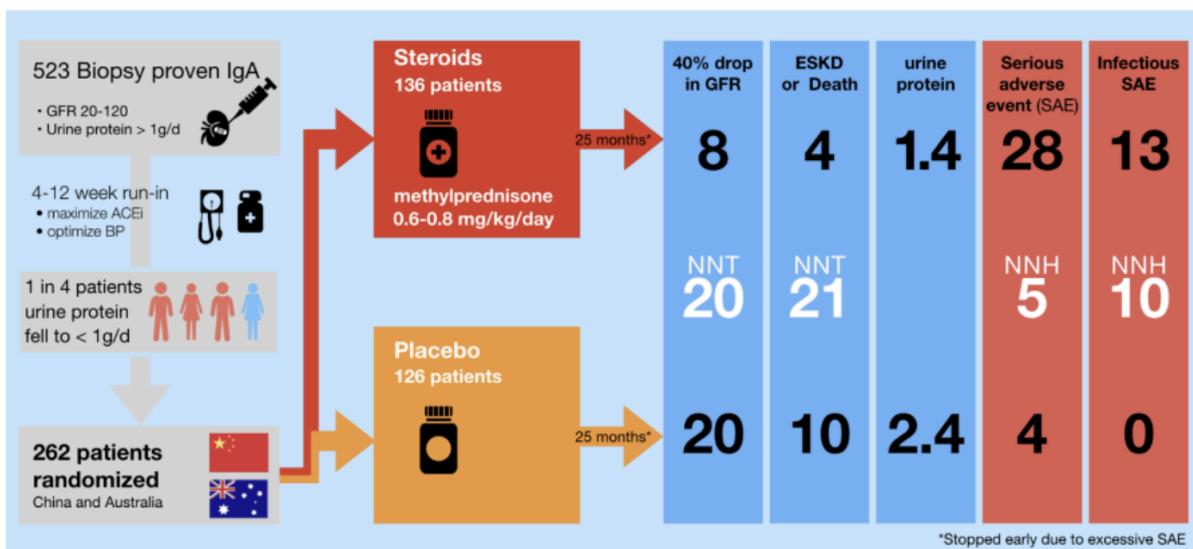
PMID: 32828189

6/ Methods

📊 Post-hoc analysis of TESTING, which is a multi-site study (Australia, Canada, China, India, and Malaysia)

⚠️ Inclusion: Biopsy proven IgAN with persistent proteinuria > 1g/day despite RAASi for minimum of 3 months, with eGFR >= 20mL/min/1.73m²

7/ Methods


⚠️ Participants were randomized to 6-9 months of full dose or reduced dose of steroids

For a refresher 👉 <https://www.nephjc.com/news/2022/6/5/re-testing>

👉 VA by @langoteamit.bsky.social

Steroids for moderate IgA Nephropathy: The TESTING Study

Effect of Oral Methylprednisolone on Clinical Outcomes in Patients With IgA Nephropathy
Lv J, Zhang H, Wong MG, Jardine M, Et al. JAMA 318(5); 2017.

8/ Outcomes

- Primary Outcome: Major adverse kidney outcomes (40% reduction in eGFR from baseline, renal failure, or death from renal failure)
- Secondary Outcomes: ⏳ to renal failure, percentage change in proteinuria over 12 months, and eGFR 📈 over 2 years

9/ Statistics

- Treatment/Sex Interactions
- Primary outcome via Cox hazard models*
- Secondary outcome via mixed effect models*

*Models included interaction analysis via sex, treatment, & time; models adjusted for baseline data, including proteinuria, eGFR, endocapillary hypercellularity, & site

10/ Statistics

Kidney Outcomes

Primary Outcome: Kaplan Meier survival; confounders adjusted by Cox hazard models, including IgAN Risk Prediction Tool and baseline characteristics (age, Oxford score, proteinuria, eGFR, smoking, race, BMI, hypertension, systolic blood pressure)

11/ Clinical Characteristics

⌘ Significant differences include ♂ have higher levels of the following than ♀ : BMI, smoking, hypertension, systolic BPs, proteinuria, IFTAs

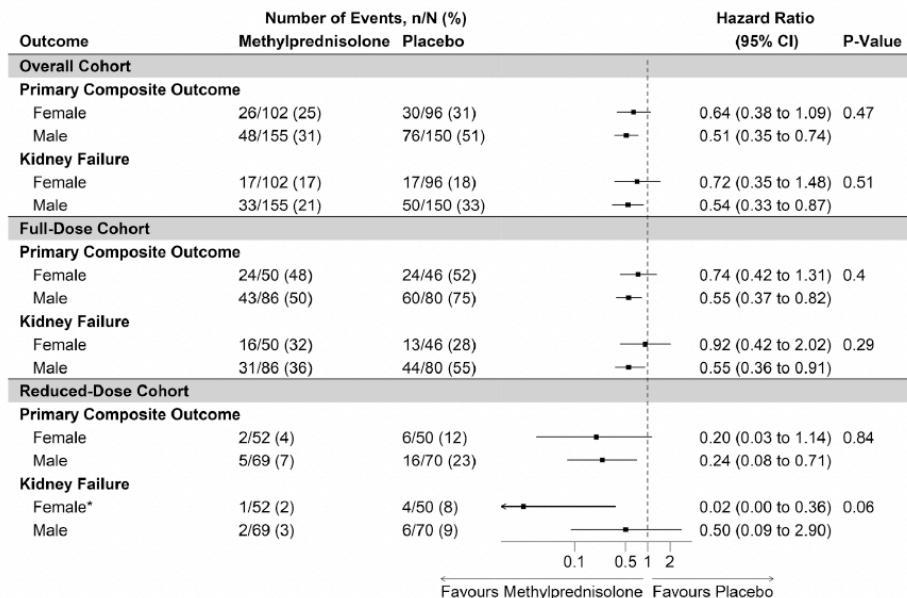
⌘ ♀ were older than ♂

Table 1. Baseline characteristics of participants in the TESTING trial by sex

Characteristics	Sex		P-Value
	Female (n = 198)	Male (n = 305)	
Randomized glucocorticoid dose, n (%)			0.23
Full dose	96 (48.5%)	166 (54.4%)	
Reduced dose	102 (51.5%)	139 (45.6%)	
Intervention, n (%)			0.95
Methylprednisolone	102 (51.5%)	155 (50.8%)	
Placebo	96 (48.5%)	150 (49.2%)	
Age, median (IQR), yr	37.6 (30.4–47.4)	35.1 (28.4–44.8)	0.02
Ethnicity, n (%) ^a			0.40
White	6 (3.0%)	19 (6.2%)	
Chinese	149 (75.3%)	230 (75.4%)	
South Asian	30 (15.2%)	33 (10.8%)	
South-East Asian	13 (6.6%)	20 (6.6%)	
Japanese	0 (0.0%)	1 (0.3%)	
Other Eastern Asian	0 (0.0%)	1 (0.3%)	
Mixed	0 (0.0%)	1 (0.3%)	
Body mass index, mean (SD), kg/m ²	24.5 (4.7)	25.3 (4.4)	0.05
Smoking history			< 0.001
Previous smoker	2 (1.0%)	64 (21.0%)	
Current smoker	1 (0.5%)	41 (13.4%)	
Medical history			
Macroscopic hematuria	35 (17.7%)	45 (14.8%)	0.38
Hypertension	83 (41.9%)	158 (51.8%)	0.03
Tonsillectomy	0 (0.0%)	3 (1.0%)	0.16
Previous corticosteroids	15 (7.6%)	13 (4.3%)	0.11
Previous other immunosuppressant	11 (5.6%)	18 (5.9%)	0.87
Family history of IgA nephropathy	6 (3.0%)	6 (2.0%)	0.45
Diabetes	8 (4.0%)	9 (3.0%)	0.51
Blood pressure, median (IQR), mmHg			
Systolic	122 (13.6)	126 (12.4)	0.007
Diastolic	79.7 (9.6)	81.0 (9.7)	0.03
Laboratory findings, median (IQR)			
Urine protein, g/d	1.9 (1.4–2.8)	2.1 (1.5–3.1)	0.05
eGFR, ml/min per 1.73 m ²	58.2 (42.0–75.7)	58.2 (43.4–77.4)	0.73
Time since kidney biopsy, median (IQR), mo	5.0 (3.0–13.0)	5.0 (4.0–12.5)	0.47
Histology on kidney biopsy, n (%) ^b			
M1	119 (62.0%)	176 (58.5%)	0.44
E1	49 (24.7%)	78 (25.6%)	0.83
S1	134 (69.8%)	202 (67.1%)	0.53
Tubular atrophy/interstitial fibrosis (T)			0.03
T0: 0%–25%	105 (54.7%)	136 (45.2%)	
T1: 26%–50%	70 (36.5%)	117 (38.9%)	
T2: > 50%	17 (8.9%)	48 (15.9%)	

eGFR, estimated glomerular filtration rate (calculated using the Chronic Kidney Disease Epidemiology Collaboration formula); IQR, interquartile interval.

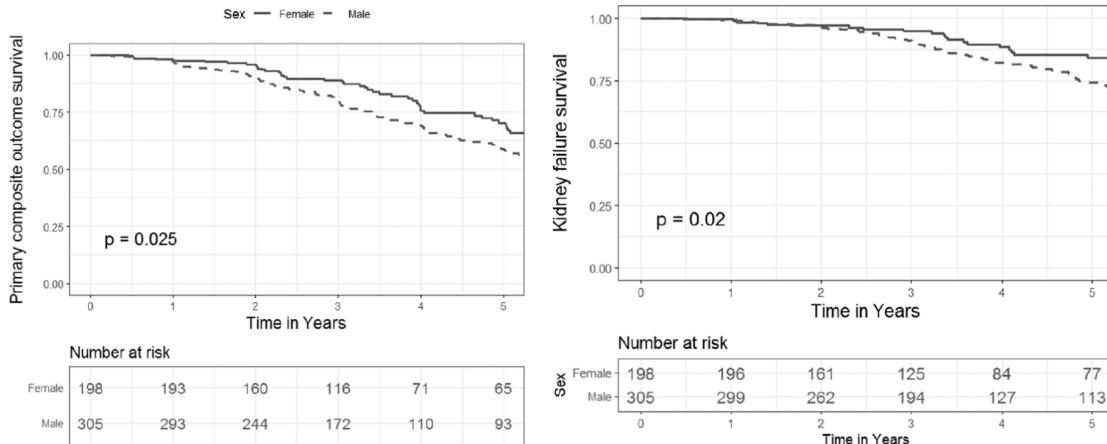
^aEthnicity was self-reported by participants.

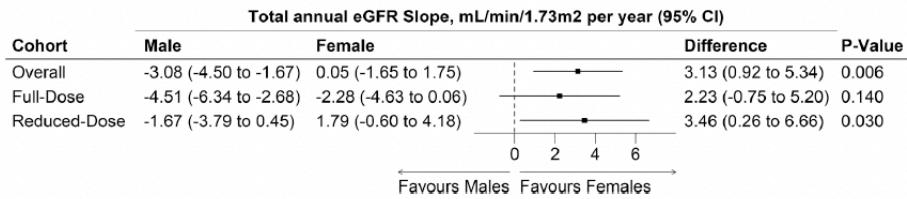

^bHistological findings were scored as per the Oxford Classification MEST scoring system.

Normally distributed data are presented as mean (SD) and compared with *t* tests.

Nonnormally distributed data are expressed as median (IQR) and compared using Mann-Whitney U tests. Categorical data are presented as n (%) and compared using chi-square tests.

12/ Treatment Response by Sex


- 👉♂ and 💁♀ both appear to have non-significant improvements in composite primary outcome
- 👉♂ had 59.4% and 💁♀ a 47.2% reduction in proteinuria over 12 months
- 👉♂ had an eGFR decline of 3.73mL/min/1.73m²/year vs 3.21 in 💁♀ over 2 years


Figure 1. Effect of methylprednisolone compared with placebo on kidney outcomes in the TESTING trial by sex. Effect of methylprednisolone versus placebo on the primary composite outcome (40% eGFR decline, kidney failure, or death because of kidney disease) and kidney failure by sex subgroups for the overall TESTING cohort, and the full- and reduced-dose methylprednisolone cohorts. Hazard ratios obtained from a Cox proportional hazards model, with corresponding 95% confidence intervals and P-value for heterogeneity conducted using likelihood ratio test. *Lower limit of 95% confidence interval = 0.0008. eGFR, estimated glomerular filtration rate.

13/ Kidney Outcomes by Sex

- 👉♂ had a 44% higher risk of primary outcome than 💁♀, even after adjusting for baseline covariates
- 👉♂ had greater decline in eGFR than 💁♀ when on full vs reduced dose steroid treatment

Figure 2. Kidney survival in the TESTING trial by sex. Kaplan-Meier curves for time to the primary composite outcome and kidney failures for males and females with corresponding log-rank *P*-values.

Figure 3. Difference in total eGFR slope over 2 years in IgA nephropathy by sex. The difference in total annualized eGFR slope over 2 years in males versus females in the overall TESTING cohort, and the reduced-dose and full-dose cohorts separately. A 2-slope, mixed-effects, linear spline model was used with an unstructured residual variance-covariance matrix and a knot at month 3. Fixed effects included treatment arm, baseline eGFR and baseline proteinuria. CI, confidence interval; eGFR, estimated glomerular filtration rate.

14/ Insights

- 🔑 Steroids improve kidney outcomes (delays dialysis initiation, slows eGFR decline, reduces proteinuria) regardless of sex
- 🔑 Males have higher likelihood of renal failure and steeper eGFR decline

15/ Strengths

- 💪 First to look at sex differences in treatment and outcomes
- 💪 Large international data from largest steroid trial in IgAN
- 💪 Comparable representation from females and males

16a/ Limitations

- 👎 Small when cohort was split into female/male so unable to make broader conclusions
- 👎 Post-hoc retrospective study rather than prospective
- 👎 External validity

16b/ Limitations Continued

- 💡 Large portion of this cohort is southeast Asian

 Studies have shown that IgA in SE Asians tend to be more aggressive than Europeans and Africans

<https://pubmed.ncbi.nlm.nih.gov/40975564/>

17/ Now let's see if you have learned something!

Do you think sex makes a difference in IgAN? Feel free to write a commentary!

1. Yes
2. No
3. More data please!

18/ The topic remains controversial. We hope this #tweetorial has improved your knowledge on the effects of sex on IgAN. Please share this [#tweetorial](#) with your followers and friends! Thanks to [@MChanMD](#) for authoring & *** for great feedback! [@ISNkidneycare](#) [@KIReports](#)